Table of contents

- 12 Foundation, World and Transformer Models (Advanced Topic)
- AlphaGo, AlphaZero & MuZero
- Foundation, World and Transformer Models
- Convergence of RL, Autoregression & Transformers

12 Foundation, World and Transformer Models (Advanced Topic)

Model-Based Reinforcement Learning

Last Module: Actor critic (policy gradient)

Previous Modules: Value function approximation using deep learning

This Module: Combining deep learning, tree search and transformer models

AlphaGo, AlphaZero & MuZero

AlphaGo - Core Idea

First system to combine deep learning and tree search for superhuman play.

Domain: Go only.

Pipeline integrates:

- 1. Supervised learning from expert games of human players
- 2. Reinforcement learning through self-play
- 3. Monte Carlo Tree Search (MCTS) guided by neural networks

AlphaGo - Neural networks & losses

Neural Network	Description
Policy Network ($\pi 1$)	Trained <i>supervisedly</i> on human moves; 13-layer CNN (Go board 19×19 × 48 planes)
Policy Network (π_2)	Refined by self-play RL (same architecture)
Value Network (v)	13-layer CNN + 2 fully connected layers; outputs scalar win probability $v(s)$

Training objectives:

$$\mathcal{L}_{\pi} = -\log \pi heta(a^*|s), \qquad \mathcal{L}_{v} = (v_{\phi}(s) - z)^2$$

where $z \in \{-1, +1\}$ is the game outcome.

AlphaGo Planning integration

MCTS uses:

- Policy prior $\pi\theta(a|s)$ from policy network π_1 (parameters θ) \to biases search toward likely moves
- Value estimate $v_{\phi}(s)$ from value network v (parameters ϕ) ightarrow evaluate leaves

Move selection at root:

$$\pi_{\text{MCTS}}(a|s_0) \propto N(s_0,a)^{1/\tau}$$

Once π_2 is trained through reinforcement learning, AlphaGo uses it to play millions of games against itself.

• Each game produces pairs (s,z): (s_t,z_t) where $z\in\{-1,+1\}$ is the game outcome.

These are used to train the value network $v_{\phi}(s_t)$ via regression:

$$\min_{\phi} \left(v_{\phi}(s_t) - z_t \right)^2$$

• So the value network learns to predict who will win from any board position that strong play (i.e., $\pi 2$) would reach.

Achieved 4–1 win vs Lee Sedol (2016)

AlphaZero - Unified Self-Play RL

Extends AlphaGo → Go, Chess, Shogi

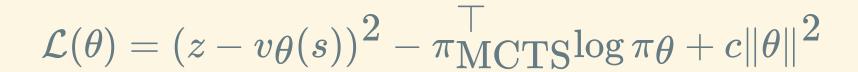
- Removes human data and hand-crafted rollout policy
- Fully self-play training loop

AlphaZero - Neural network and objective

Single residual CNN shared by policy + value

- 20 or 40 ResNet blocks, 256 filters, BatchNorm + Rectified Linear Circuit (ReLU)
- Input: stack of board planes (19×19×N)
- Heads:
 - Policy head: $1 \text{ conv} + 1 \text{ FC} \rightarrow \text{softmax over legal moves}$
 - Value head: $1 \operatorname{conv} + 2 \operatorname{FC} \to \operatorname{scalar} v_{\theta}(s)$

Loss:



AlphaZero - Learning & Planning Loop

 $Network \Rightarrow MCTS \Rightarrow Self-play games \Rightarrow Network update$

- MCTS: ~800 simulations per move
- Network: ResNet trained via SGD on MCTS targets
- Unified architecture simplified training → superhuman performance across games

MuZero - Learning to Plan Without Rules

- AlphaZero still needed explicit game rules
- MuZero learns a latent model of dynamics for planning without knowing rules
- Same MCTS framework, but search happens in latent space

MuZero - Neural networks (3)

Neural Network	Function	Notes
Representation $h_{ heta}$	Observation \rightarrow latent state s_0 (learns (latent) state representation)	6 ResNet blocks for Atari (pixels → latent)
Dynamics $g\theta$	Predicts s_{t+1}, r_{t+1} from (s_t, a_t) (learns model)	Small conv stack + reward head
Prediction $f_{ heta}$	Outputs policy p_t and value v_t from s_t	Two heads (softmax policy, scalar value)

MuZero – TD-Style Learning (Bootstrapped Returns)

Unlike AlphaZero (which uses full-episode Monte Carlo targets), *MuZero* trains its value network using n-step bootstrapped (TD) returns For each step (t), the target value is:

$$\hat{v}_t = \sum_{i=0}^{n-1} \gamma^i r_{t+i} + \gamma^n v_{ heta}(s_{t+n})$$

- Combines observed rewards and bootstrapped value from the predicted future state
- Allows *credit assignment* across long horizons without waiting for episode termination

MuZero minimises a combined loss:

$$\mathcal{L} = \sum_{k} \left[(v_k - \hat{v}_k)^2 + (r_k - \hat{r}_k)^2 - \pi_k^ op \log p_k
ight]$$

- Value loss: TD-style bootstrapped error
- Reward loss: immediate reward prediction
- Policy loss: cross-entropy with MCTS visit-count distribution

TD bootstrapping makes MuZero more sample efficient than AlphaZero

Planning (MCTS) provides strong policy/value targets; TD updates keep learning continuous

MuZero - Training and Integration

MCTS operates within the learned model:

$$s_{t+1}, r_t = g_{ heta}(s_t, a_t)$$

Targets from MCTS train all three nets end-to-end Loss:

$$\mathcal{L} = \sum_k ig[(v_k - \hat{v}_k)^2 + (r_k - \hat{r}_k)^2 - \pi_k^ op \log p_k ig]$$

 Achieves AlphaZero-level play in Go/Chess/Shogi and strong Atari results from pixels

MuZero - Results and Significance

Domain	Training time to superhuman level	Benchmark / Opponent	Notes
Chess	\approx 4 hours (on 8 TPUv3 pods)	Stockfish	Surpassed world- champion chess engine performance
Shogi	pprox 2 hours	Elmo	Surpassed leading professional Shogi engine
Go	pprox 9 hours	AlphaZero / KataGo	Matched AlphaZero's superhuman play using only learned dynamics
Atari (57 games)	~200M frames	Rainbow / IMPALA	Exceeded or matched best model- free RL baselines across games

Key insights

- No rules given: MuZero learned dynamics, value, and policy purely from experience
- Unified algorithm: Same architecture and hyperparameters across all domains
- Planning efficiency: Performed Monte Carlo Tree Search (MCTS) entirely in latent space
- Sample efficiency: Achieved AlphaZero-level play within hours of self-play training

AlphaGo, AlphaZero & MuZero Comparison

System	# of NNs	Architecture	Uses known rules?	Learns model?	Planning
AlphaGo	2 (policy + value)	13-layer CNNs		X	MCTS with rules
AlphaZero	1 (shared policy-value ResNet)	20-40 ResNet blocks		X	MCTS with rules
MuZero	3(h, g, f modules)	ResNet latent model	X	√	MCTS in latent space

Foundation, World and Transformer Models

Three Layer Agent Stack

Layer	Role (e.g. of an Agent or Robot)	Typical tools
Cognition / Reasoning	Query answering, Programming, Multi-step thinking: goal parsing, task decomposition, tool selection, hypothesis & plan revision, safety checks	LLM w/ CoT / ToT/GoT, value- guided decoding, process rewards
Semantic Policy (Vision– Language– Action)	Ground instructions & scene into actionable subgoals / waypoints	RT-X/RT-2-X (VLA Transformer), affordance & object-centric models
Control / Dynamics	Execute precise motions, stabilize, react to feedback	Dreamer V3 / TD-MPC2 / Diffusion Policy (model-based or policy learning)

CoT: Chain of Thought

ToT: Tree of Thought

GoT: Graph of Thought

VLA: Visual, language, Action Transformer

MPC: Model Predictive Control

Modern Trends

Sequential decision-making is on the ascendant: RL, model-based control, and planning-like reasoning are central to agents, robotics, and tools using tensor flow (transformer) architectures—so "planning" and "RL" must live inside differentiable, scalable systems.

Limiting assumptions: Classical planning & Reinforcement Learning's typical teaching setup (fully observable, deterministic, stationary, discrete) mismatches many modern AI settings.

Compute & tooling: Tree search doesn't map cleanly onto GPU/TPU throughput the way dense tensor ops do; differentiability matters for end-to-end training, credit assignment, and integration with deep stacks.

Requirements of RL for Foundation and World Models

Requirements of RL (additive)	Approach / System
Non-deterministic (Stochastic)	Policy Gradient
Non-stationary (Generalisation)	Value Approximation
Partially observable (Epistemic)	Actor-Critic
Differentiable (Nnet/GPU integration)	SAC, Dreamer V3
Distributed (Industrial Scaling)	IMPALA, V-trace
Agentic (Layers)	RT-X, LLM, World Models

We explore requirements of differentiable, distributed and agentic RL needed for foundation and world models

Differentiable Planning: Soft Actor Critic (SAC)

Greedy next-step choice using max; defines the Bellman optimality operator used in Q-learning/DQN.

$$Q^*(s,a) = r(s,a) + \gamma \mathbb{E}_{oldsymbol{s'}} \sim P\left[\max_{oldsymbol{a'}} Q^*(oldsymbol{s'}, oldsymbol{a'})
ight]$$

Soft (Entropy-Regularized) Bellman Backup - "softmax"

$$egin{aligned} Q_{ ext{Soft}}(s,a) &= r(s,a) + \gamma \, \mathbb{E}_{s'} {\sim} Pig[V_{ ext{Soft}}(s')ig] \ V_{ ext{Soft}}(s) &= \mathbb{E}_{a'} {\sim} \pi(\cdot|s) ig[Q_{ ext{Soft}}(s,a') - lpha \log \pi(a'|s)ig] \end{aligned}$$

- Adds entropy bonus (temperature α) \Rightarrow softens the hard max.
- As $\alpha \to 0$: $V_{\mathrm{Soft}}(s) \to \max_{a'} Q(s, a')$ (recovers hard backup).

Implementation note (SAC): a min over two critics, $\min\{Q\theta_1,Q\theta_2\}$, is often used to reduce overestimation bias (Double-Q trick), not as the backup operator.

This relaxation allows gradients to flow through the planning step.

Differentiable Planning: Dreamer V3

Era	Key system	What it added	Influence on Dreamer V3
2019	PlaNet (Hafner et al.)	Latent dynamics model (RSSM) + Cross- Entropy Method (CEM) planning in latent space	Showed model-based imagination from pixels works
2020- 22	Dreamer V1-V2	Replaced CEM with actor-critic training in imagination (no explicit planning), making everything differentiable	More efficient, easier to train on GPU
2022- 24	TD-MPC / TD-MPC 2 (Hansen et al.)	Combined short-horizon latent Model Predictive Control (MPC) with TD learning, strong continuous-control results	Reinforced ideas of gradient-based MPC and temporal-difference consistency
2023- 24	Dreamer V3	Unified architecture: one RSSM world model + imagination-based actor-critic + robust scaling across domains	Synthesizes both model- based planning and policy- gradient RL advantages

Dreamer V3 is developed by DeepMind.

Recurrent State Space Model (RSSM): Dreamer V3

Dreamer V3 uses a learned latent world model and *imagination* (planning during training) and is fully differentiable.

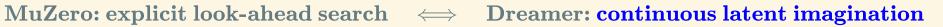
- It uses a recurrent state space (RSSM) world model (both stochastic and recurrent) to imagine trajectories for policy/value learning.
- Think of the RSSM as a latent recurrent simulator

An RSSM is implemented as a recurrent neural network (RNN) and unrolled through time

- Once the RSSM is trained, Dreamer can roll out future trajectories purely in its imagination
- RSSM is unrolled through time during training and "imagination" to simulate trajectories

Comparison of MuZero with Dreamer V3

Aspect	MuZero Dreamer V3	
Core idea	Combines learning + Monte-Carlo Tree Search (MCTS) in latent space (RSSM) and performs differential imagination rollouts	
Planning form	Expands a search tree: $s_0 o s_1, s_2, \dots$	Rolls out a latent sequence: $(h,z)_t ightarrow (h,z)_{t+1} ightarrow (h,z)_{t+2} \dots$
Model components	Representation $h(o_t)$, Dynamics (g(s,a)), Prediction $f(s)$	RSSM with deterministic h_t and stochastic z_t states
Computation	Search-based, <i>CPU-heavy</i> , not fully differentiable GPU-friendly, fully differentiable unrolled through time	
Learning loop	Tree search generates improved policies; network distils them via supervised losses	Actor-critic trained entirely on imagined trajectories from the RSSM
Search structure	Discrete branching, value backups	Sequential imagination, no branching
Output policy	Derived from <i>visit counts</i> in the search tree Learned directly through gradien updates in imagination	
Analogy	"Plan by explicit search"	"Plan by differentiable imagination"



Take-away summary

- For most continuous-control, robotics, or fine-tuning tasks: actorcritic / policy-optimisation (PPO, SAC) are easier, faster, and competitive.
- For structured combinatorial or look-ahead-heavy tasks: planning-based hybrids (MuZero, Sampled MuZero, EfficientZero) can still outperform, but with higher engineering and compute cost.

Trend: research is moving toward differentiable world models (DreamerV3) that keep MuZero's model-based benefits while retaining the simplicity and efficiency of actor-critic learning—essentially bridging the two families.

Distributed RL: IMPALA & V-trace

Importance Weighted Actor-Learner Architecture (IMPALA)

- In production in DeepMind, OpenAI & Google DeepRL
- Decoupled actor-learner: many CPU actors generate trajectories under behaviour policy μ ; a central GPU learner updates π .
- High throughput via batched unrolls (e.g., length (n)); supports RNNs (LSTM) and multi-task.
- Challenge: policy lag \rightarrow off-policy data.
- Solution: V-trace targets for stable off-policy learning.

Off-policy with *correction* that handles *policy lag* without sacrificing throughput

IMPALA was developed at DeepMind

Distributed RL: V-trace essentials

Let importance ratios
$$ho_t = \min\left(ar{
ho}, \frac{\pi(at|xt)}{\mu(at|xt)}
ight)$$
 $c_t = \min\left(ar{c}, \frac{\pi(at|xt)}{\mu(at|xt)}
ight)$ with $ar{
ho} \geq ar{c}$

Value target (per time s)

$$\delta_t^V =
ho_t \Big(r_t + \gamma V(x_{t+1}) - V(x_t) \Big), \ \ v_s = V(x_s) \ + \sum_{t=s}^{s+n-1} \gamma^{t-s} igg(\prod_{i=s}^{t-1} c_i igg) \delta_t^V$$

Policy gradient with V-trace advantage

$$A_t^{ ext{V-trace}} = r_t + \gamma v_{t+1} - V(x_t), \qquad \nabla \theta J \propto \rho_t \, \nabla \theta \log \pi \theta(a_t|x_t) \, A_t^{ ext{V-trace}}$$

Loss (typical)

$$\mathcal{L} = \underbrace{\mathbb{E}[(v_s - V(x_s))^2]}_{\text{value}} - \beta \underbrace{\mathbb{E}[\rho_t \log \pi(a_t|x_t) A_t^{\text{V-trace}}]}_{\text{policy}} - \eta \underbrace{\mathbb{E}[\mathcal{H}(\pi(\cdot|x_t))]}_{\text{entropy}}$$

Why it works

- Clipped IS ratios (ρ_t, c_t) tame variance/bias;
- Multi-step correction handles policy lag without sacrificing throughput.

Representative efficient actor-critic methods

Category	Example algorithms	Key strengths
On-policy	PPO	Stable, parallelizable, easy; standard in LLM fine- tuning (RLHF)
Off-policy (stochastic)	SAC	Maximum-entropy objective → robust exploration; excellent data efficiency
Distributed	IMPALA, V-trace	Massive scalability; production in DeepMind, OpenAI, Google DeepRL

Efficiency and Performance Comparison

Dimension	MuZero / Sampled MuZero / EfficientZero	PPO/SAC/IMPALA
Sample efficiency	Excellent when planning can reuse a model (Atari, board games)	High for off-policy (SAC); moderate for PPO
Wall-clock / GPU efficiency	Poor (search is serial & CPU-bound)	Very good (fully parallel on GPU)
Robustness & stability	Sensitive to model errors / rollout length	Stable with tuned hyper-parameters
Scalability to real- time tasks	Hard (search latency)	Good; used in robotics, continuous control, large-scale RL (IMPALA, V-trace)
Best-case performance	Outstanding in structured domains (Go, Atari)	State-of-the-art in most continuous- control and real environments

RL for Frontier & World Models

For training:

• PPO, DPO & GRPO

For Query

- Self-consistency
- Tree of Thought (beam-style)
 - Maintain and progress frontier nodes in parallel
 - Value-Guided Decoding

Self-Consistency for LLM Reasoning (on Chains of Thought)

Idea (Wang et al., 2023):

Instead of trusting a single Chain-of-Thought (CoT), sample many diverse CoTs and aggregate their final answers.

• Majority (or verifier-weighted) agreement \approx more reliable reasoning.

Self Consistency

- 1. Prompt the same question with CoT enabled ("think step-by-step")
- 2. Sample K reasoning paths with stochastic decoding (e.g., temperature 0.7-1.0, nucleus $p \approx 0.9$).
- 3. Extract final answers from each path.
- 4. Aggregate
 - Majority vote over final answers (self-consistency).
 - or Score with a verifier/rubric and pick highest-scoring.
 - Optional: consensus check (e.g., numeric tolerance).

Why it helps

- ullet Diversity o reduces single-path errors/hallucinations.
- Voting/verification \rightarrow filters spurious but fluent chains.

How paths are progressed

- CoT: each path is a linear sampled chain.
- ToT (Tree-of-Thought): expand multiple partial chains (branching), keep top beams.
- GoT (Graph-of-Thought): allow branches to merge/reuse subresults; select best subgraph.
- In all cases, progress = decode next step (sample or beam), prune with a heuristic/verifier, repeat until a stopping rule.

Practical settings

- K: 10-40 (cost vs. accuracy).
- Extractor: robust regex/templates for the final answer.
- Verifier: separate model or rules (units, constraints, tests).
- Failure mode: consistent but wrong consensus \rightarrow add tools/checks (calculator, code, retrieval).

Self-consistency = ensemble of CoTs + aggregation; ToT/GoT generalize progression by branching/merging before voting or verification.

Vision Transformers (ViTs)

Since ~2020, attention-based Transformers have started competing and often surpassing CNNs in large-scale vision benchmarks.

 $Image \rightarrow patches \rightarrow tokens \rightarrow transformer$

• Patchify the image: split an image of size (HW C) into non-overlapping patches (PP).

Number of tokens
$$N=rac{HW}{P^2}$$
.

ullet Linear patch embedding: flatten each patch $x_i \in \mathbb{R}^{(P^2C)}$ and project

$$z_i^0 = W_E x_i + b_E \in \mathbb{R}^D.$$

(Often implemented as a conv with kernel/stride P.)

Vision Transformers - Tokens and Transformer Encoding

- Add a class token and positions: prepend [CLS] and add learnable positions $\tilde{z}_i^0 = z_i^0 + p_i$, with sequence $[\tilde{z}_{CLS}^0, \tilde{z}_1^0, \dots, \tilde{z}_N^0]$.
- Transformer encoder stack (repeated (L) times):

$$\mathrm{SA}(X) = \mathrm{softmax}\Big(\frac{QK}{\sqrt{dk}}\Big)V$$
 with multi-head self-attention,

then MLP; both with residuals + layer norm.

- Prediction head: take the final [CLS] (or pool all tokens) ightarrow linear head () class probs.
- Note: smaller $P \Rightarrow$ more tokens (detail 1, cost 1); larger $P \Rightarrow$ fewer tokens (detail \downarrow , cost \downarrow).

Variants like *Swin* use local windows with shifts for scalability; ViT uses global attention.

RT-X Transformers in Robotics

RT-X:

Increasingly transformers are also being used for robotics (e.g. RT-1, RT-2, RT-X Google DeepMind)

large-scale imitation across many robots.

"RT-family" includes hybrid attention across vision, language, and control.

They utilises Visual, Language, Action (VLA) transformers

RL Fine Turning & Query optimisation

Foundation Model	RL/Query Optimiser	Example
Attention-based transformer / LLM	PPO, DPO, GRPO / CoT / ToT/GoT	Gemini 2.5, ChatGPT 3.5-5.0, ChatGTP Operator, Claude Computer Use, DeepSeek R1
Attention-based transformer / Vision + Language + Action (VLA)	PPO	RT-X
RSSN / Control	Diffusion Policy	Dreamer V3

Chain of thought (CoT) / Tree of thought (ToT) & Graph of Thought (GoT)

Convergence of RL, Autoregression & Transformers

Implicit planning through attention inside world models

Transformers can simulate "multiple futures" inside the hidden state

- 1. Self-attention makes "lookahead" possible
- 2. Attention learns which futures matter
- 3. Transformers can simulate "multiple futures" inside the hidden state
- 4. Implicit planning is amortised planning
- 5. The policy uses the world model's implicit planning

Autoregression & joint distribution factorisation

Autoregression models a sequence by predicting each element from all previous elements:

$$x_t = f(x_{1:t-1}) + \epsilon$$

Used in time series, sequence modelling, and autoregressive transformers.

Factorises a joint distribution as:

$$p(x_{1:T}) = \prod_{t=1}^{T} p(x_t \mid x_{1:t-1})$$

Masked latent transformers

A masked latent transformer is a transformer that models sequences of latent states, using attention masks to enforce causality or planning structure just like in autoregressive language models.

• It is a transformer that predicts (or refines) latent variables in a sequence, but only using allowed past or partial information, enforced through a mask.

Masked latent transformers appear in world-model RL, video generation, and planning-as-generation frameworks.

 They are increasingly used as a replacement for RNN/RSSM latent dynamics models in Dreamer-like

Attention-baed transformers (recap)

Transformers model sequences using self-attention, where each token computes weighted interactions with other tokens.

Key components:

- Token embeddings and positional encodings
- Self-attention:

$$\operatorname{Attn}(Q, K, V) = \operatorname{softmax}\left(rac{QK^{\perp}}{\sqrt{d_k}}
ight)V$$

Multi-head attention, feedforward layers, residual

Causal masking

Causal masking is used in autoregressive transformers:

- Each token attends only to past tokens
- Enforces the autoregressive condition

$$x_t \sim p(x_t \mid x_{1:t-1})$$

This masked attention mechanism directly carries over to masked latent transformers used in world-model RL.

Masked latent transformers: LLMs versus World Models

In NLP transformers in large language models:

- Tokens = words
- Mask = causal mask (can't see the future)

In masked latent transformers:

- Tokens = latent states z_t (learned hidden representations)
- Mask = ensures correct temporal, causal, or planning structure

Three major paradigms

Three major paradigms reflect the convergence of RL, autoregression and transformer models:

- Decision Transformer (offline, no planning),
- World-Model RL (planning, includes dynamics), and
- Actor-Critic Transformers (online, no dynamics).

Case Study: Actor-Critic Transformers

Actor-critic transformers are RL agents that use transformer architectures to parameterize the actor, critic, or both, while still relying on Bellman equations and policy gradients for learning.

 Actor-Critic Trnsformers essentially outperform LSTMs in long-horizon POMDP

Comparison

Dimension	Decision Transformer	World-Model RL	Actor-Critic Transformers
Core Idea	Offline sequence modelling of trajectories; imitate high-return behaviour	Learn a predictive dynamics model and plan or imagine futures inside it	Classical actor–critic RL but with transformer networks for policy/critic
Learns dynamics model?	□No	✓ Yes (explicit or latent dynamics)	□No
Does planning?	☐ No explicit planning	✓ Yes (explicit or implicit)	☐ No planning (just TD + policy gradient)
Uses Bellman equations?	□ Never	✓ Often (Dreamer, MuZero)	✓ Yes (critic learning)
Uses TD learning?	□No	✓ Yes (usually; except pure planners like Trajectory Transformer planning mode)	✓ Yes
Training regime	Offline only	Typically online , but can combine offline + online	Online RL
Policy improvement	□ None (no search, no DP)	✓ Yes (via planning or imagined rollouts)	✓ Yes (policy gradient)
Value function learned?	□No	✓ Yes (in most models)	✓ Yes (critic)
Reward used	Only to compute return-to-go (RTG) labels	Used in Bellman updates + imagination	Used in TD error for critic

Dimension	Decision Transformer	World-Model RL	Actor-Critic Transformers
Primary transformer role	Sequence → next action predictor (GPT-like)	Dynamics model + future predictor + latent planner	Memory encoder for policy/value
Handles partial observability?	✓ Through long context window	✓ Through latent state + prediction	✓ Through transformer memory
Long-horizon credit assignment	Weak (depends on data quality)	Strong (via imagined rollouts or implicit planning)	Moderate (TD propagation + attention)
Required data	High-quality offline trajectories	Real interactions + possibly offline data	Real interactions (on-policy or off-policy)
Exploration	□ None	✓ Yes (through policy learning or planning)	✓ Yes (inherent to actor-critic)
Generalises beyond dataset?	☐ Mostly no	✓ Yes (model-based planning)	✓ Yes (online improvement)
Analogy	"GPT for actions"	"Agent learns a simulator and plans inside it"	"LSTM actor–critic upgraded to a transformer"
Example algorithms	Decision Transformer; Upside- Down RL	DreamerV2/V3, MuZero, Sampled MuZero, Trajectory Transformer (planning), AWM	GTrXL, Transformer-PPO, Transformer-SAC
Main strength	Simple, powerful offline learning	Efficient long-horizon reasoning and planning	Strong online learning with rich temporal representations
Main weakness	Cannot improve beyond dataset; no true RL	Dynamics learning is hard; model bias	No planning; no model; can be sample-inefficient

