Table of contents

- 9 Model-Free Prediction & Control (MC and TD Learning, Sarsa and Q-Learning)
- Monte-Carlo Learning
- Temporal-Difference Learning
- TD(λ)
- Example: Temporal-Difference Search for MCTS
- Model-Free Control (Sarsa and Q-Learning)
- On-Policy Monte-Carlo Control
- On-Policy Temporal-Difference Learning
- Off-Policy Learning

9 Model-Free Prediction & Control (MC and TD Learning, Sarsa and Q-Learning)

Model-Free Reinforcement Learning

Last Module (8):

- Integrating learning and planning
- Use planning to construct a value function or policy

This Module (9):

- Model-free prediction and control
- Prediction: Optimise the value function of an unknown MDP
- Control: Learn model directly from experience

Monte-Carlo Learning

Monte-Carlo Reinforcement Learning

MC methods learn directly from episodes of experience

 MC is model-free: no knowledge of MDP transitions / rewards

MC learns from complete episodes

No bootstrapping, as we will see later

MC uses the simplest possible idea of looking at sample returns: *value* = *mean return*

 Caveat: can only apply to episodic MDPs, i.e. all episodes must terminate

Monte-Carlo Policy Evaluation

• Goal: learn v_π from episodes of experience under policy π

$$S_1, A_1, R_2, \ldots, S_k \sim \pi$$

• Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$$

Recall that the value function is the expected return:

$$v_{oldsymbol{\pi}}(s) = \mathbb{E}_{oldsymbol{\pi}}\left[G_t \mid S_t = s
ight]$$

- Monte-Carlo policy evaluation uses empirical mean return instead of expected return
- ullet Computes empirical mean from the point t onwards using as many samples as we can
- Will be different for every time step

First-Visit Monte-Carlo Policy Evaluation

To evaluate state, s:

- On the first time-step, t that state, s, is visited in an episode:
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Increment total return $S(s) \leftarrow S(s) + G_t$
- Estimate:

$$V(s) = rac{S(s)}{N(s)}$$

By Law of Large Numbers, $V(s) o v_\pi(s)$ as $N(s) o \infty$

Only requirement is we somehow visit all of these states

The **Central Limit Theorem** tells us how quickly it approaches the mean

- The variance (mean squared error) of estimator reduces with $\frac{1}{N}$
- ullet i.e. rate is independent of size of state space, |s|
- speed depends on how many episodes/visits reach s (coverage probabilities).

Every-Visit Monte-Carlo Policy Evaluation

To evaluate state, s:

- Every time-step, t, that state, s, is visited in an episode:
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Increment total return $S(s) \leftarrow S(s) + G_t$
- Estimate:

$$V(s) = rac{S(s)}{N(s)}$$

Again, $V(s) o v_\pi(s)$ as $N(s) o \infty$.

First-Visit versus Every-Visit Monte-Carlo Policy Evaluation?

Every-Visit Advantages:

- Especially good when episodes are short or when states are rarely visited — no sample gets "wasted."
- i.e. uses more of the data collected, often faster convergence in practice.

First-visit Advantages:

- Useful when episodes are long and states repeated many times.
- i.e. avoids dependence between multiple visits to the same state in one episode.

Blackjack Example

States (~ 200):

- Current sum of cards (12-21)
- Dealer's showing card (Ace-10)
- Whether you have a *usable* ace (can be counted as 1 or 11 without *busting* > 21) (yes/no)

Actions:

- Stand: stop receiving cards (and terminate)
- Hit: take another card (no replacement)

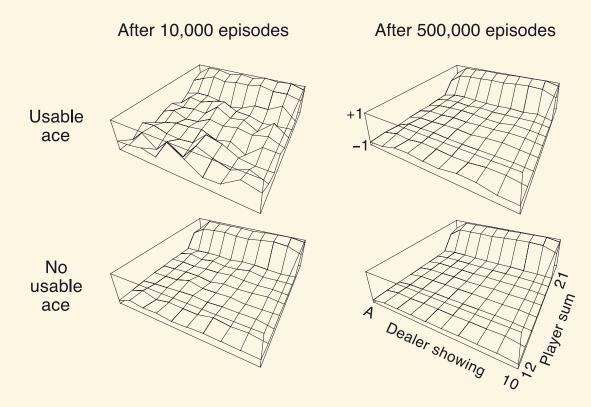
Transitions:

ullet You are automatically hit if your sum <12

Rewards:

- ullet For stand: +1 if your sum > dealer's; 0 if equal; -1 if less
- ullet For hit: -1 if your sum >21 (and terminate); 0 otherwise

Blackjack Value Function after Monte-Carlo Learning



Policy: *stand* if sum of cards ≥ 20, otherwise *hit*

- Learning value function directly from experience
- Usable ace value is noisier because the state is rarer

Key point: once we have learned the value function from experience,

 we can evaluate actions for making the best decision for optimising a policy as we will see later

Incremental Mean (Refresher)

The mean μ_1, μ_2, \cdots of a sequence x_1, x_2, \ldots can be computed incrementally,

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} (x_k + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$

- $\mu k-1$ is the previous mean: predicts what think value will be
- xk is the new value

• Incrementally corrects mean $\frac{1}{k}$ in direction of error $x_k - \mu_{k-1}$

Incremental Monte-Carlo Updates (Same idea)

Update V(s) incrementally after each episode $S_1, A_1, R_2, \ldots, S_T$:

• For each state S_t with return G_t :

$$egin{aligned} N(S_t) \leftarrow N(S_t) + 1 \ V(S_t) \leftarrow V(S_t) + rac{1}{N(S_t)} \left(G_t - V(S_t)
ight) \end{aligned}$$

In non-stationary problems, it can be useful to track a running mean by forgetting old episodes using a constant step size α :

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

A constant step size turns the MC estimate into an exponentially weighted moving average of past returns

• Decays geometrically with visits - the return from k visits ago depends on $\alpha(1-\alpha)^k$), instead of arithmetically according to N returns having an equal weight of $\frac{1}{N}$

In general, we *prefer* non-stationary estimators because our policy we will be evaluating is continuously improving

• Essentially we are always in a non-stationary setting in RL as we improve our policy through experience

In summary, in Monte-Carlo learning we

- 1. Run out episodes,
- 2. look at the complete returns, and
- 3. update estimates of the mean value of return at each state of the return.

Temporal-Difference Learning

Temporal-Difference (TD) Learning

TD methods learn directly from episodes of experience

TD is model-free: no knowledge of transitions/rewards (as in MC)

TD learns from incomplete episodes, by bootstrapping

- It substitutes, or bootstraps, reminder of the trajectory with the *estimate* of what will happen, instead of waiting for full returns
- i.e. TD updates one guess with a subsequent guess

MC versus TD

Goal: learn v_{π} online from experience under policy π

Incremental every-visit Monte-Carlo:

Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G_t} - V(S_t) \right)$$

Simplest temporal-difference learning algorithm: TD(0):

Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ (like Bellman equation)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$$

 $R_{t+1}+\gamma V(S_{t+1})$ is called the TD target (we are moving towards) $\delta_t=R_{t+1}+\gamma V(S_{t+1})-V(S_t)$ is called the TD error

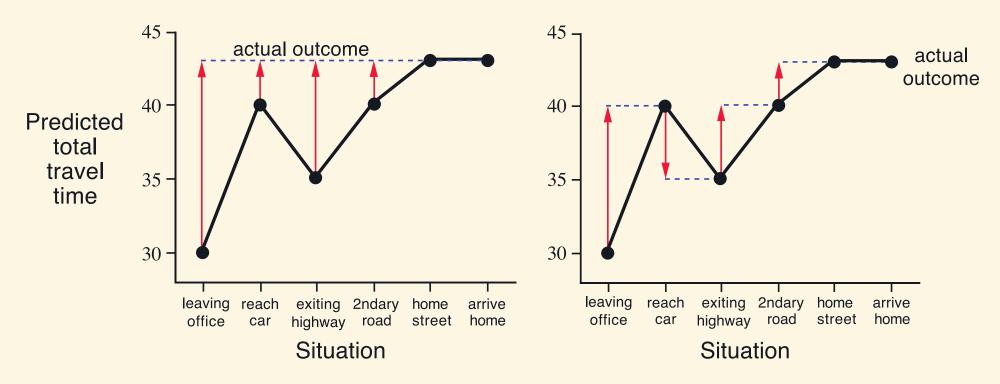
Driving Home Example

State	Elapsed Time (min)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC versus TD

Changes recommended by Monte Carlo methods ($\alpha=1$):

Changes recommended by TD methods $(\alpha = 1)$:



Red arrow represent recommended updates by MC and TD respectively

Advantages & Disadvantages of MC versus TD

TD can learn before knowing the final outcome

- TD can learn online after every step
- MC must wait until end of episode before return is known

TD can learn without the final outcome

- TD can learn from incomplete sequences
- MC can only learn from complete sequences
- TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

Return $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$ is an unbiased estimate of $v_{\pi}(S_t)$.

True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is an unbiased estimate of $v_{\pi}(S_t)$.

- TD target $R_{t+1} + \gamma V(S_{t+1})$ is a biased estimate of $v_{\pi}(S_t)$.
- TD target has much lower variance than the return, since
 - Return depends on many random actions, transitions, rewards.
 - TD target depends on *one* random action, transition, reward.

Advantages & Disadvantages of MC versus TD (2)

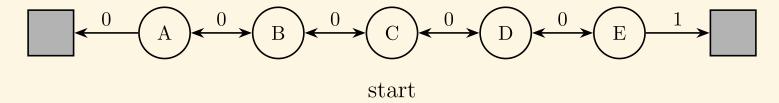
MC has high variance, zero bias

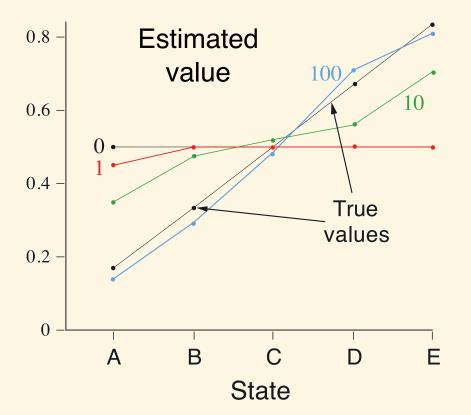
- Good convergence properties (even with function approximation)
- Not very sensitive to initial value
- Very simple to understand and use

TD has low variance, some bias

- Usually more efficient than MC
- TD(0) converges to $v_\pi(s)$ (but not always with function approximation)
- More sensitive to initial value

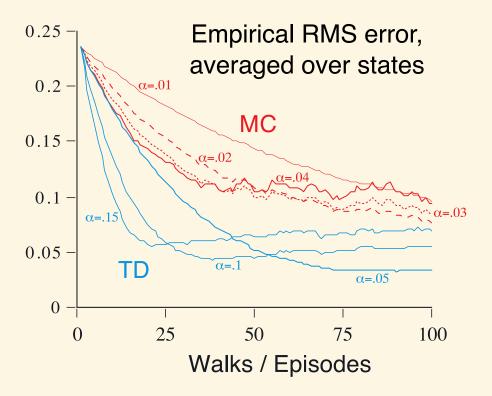
Random Walk Example





Random Walk example based on uniform random policy: left 0.5 and right 0.5

Random Walk: MC versus TD



• This demonstrates the benefit of bootstrapping

Batch MC and TD

MC and TD both converge in the limit

ullet $V(s) o v_{\pi}(s)$ as experience $o \infty$

What about a *batch* solution for finite experience, *k* finite episodes?

$$s_1^1, a_1^1, r_2^1, \cdots s_{T_1}^1$$

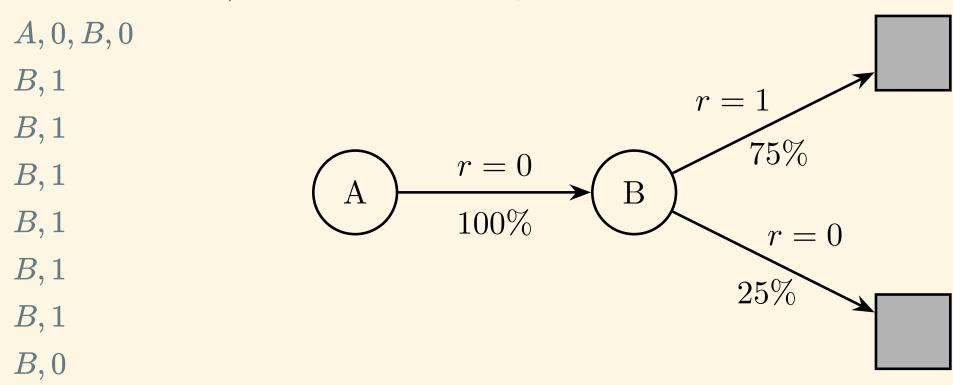
•

$$s_1^K, a_1^K, r_2^K, \cdots s_{T_K}^K$$

In batch mode you repeatedly sample episode $k \in [1,K]$ and apply MC or TD(0) to episode k

AB Example

Two states A, B; no discounting; 8 episodes:



Clearly, V(B) = $\frac{6}{8}$ = 0.75, but what about V(A)?

Certainty Equivalence

MC converges to solution with minimum mean-squared error

Best fit to the observed returns

$$\sum_{k=1}^K \sum_{t=1}^{T_k} \left(G_t^k - V(s_t^k)
ight)^2$$

ullet In the AB example, V(A)=0

TD(0) converges to solution of max likelihood Markov model that best explains the data

• Solution to the MDP $\langle \mathcal{S}, \mathcal{A}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma \rangle$ that best fits the data ($\hat{\mathcal{P}}$ counts the transitions, and $\hat{\mathcal{R}}$ the rewards)

$$\hat{\mathcal{P}}_{s,s'}^a = \frac{1}{N(s,a)} \sum_{k=1}^K \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k = s, a, s')$$

$$\hat{\mathcal{R}}_{s}^{a} = rac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} \mathbf{1}(s_{t}^{k}, a_{t}^{k} = s, a) r_{t}^{k}$$

Advantages and Disadvantages of MC versus TD (3)

TD exploits Markov property

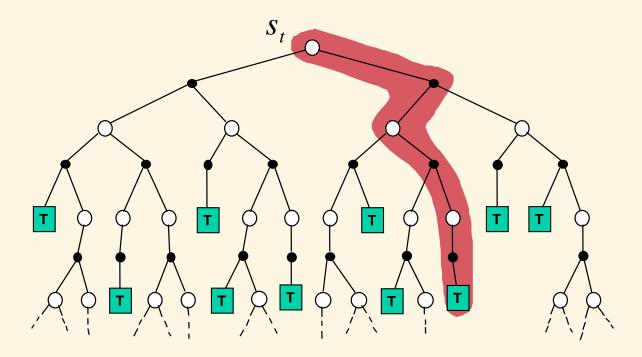
Usually more efficient in Markov environments

MC does not exploit Markov property

- Usually more effective in non-Markov environments
- Note that partial observability and non-stationarity are reasons an environment can be non-Markov

Monte-Carlo Backup

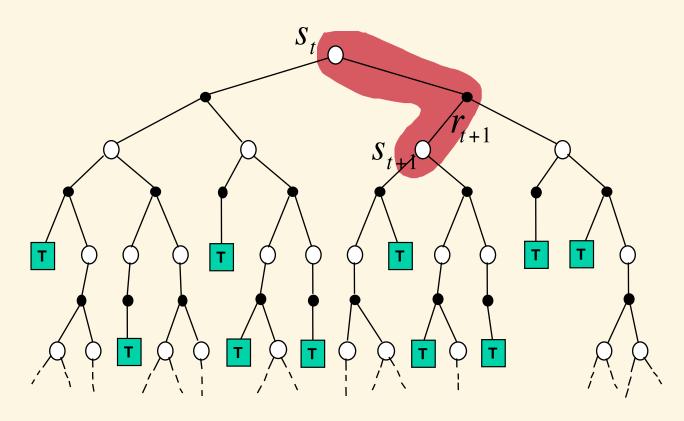
$$V(S_t) \leftarrow V(S_t) + lpha igl(G_t - V(S_t)igr)$$



Starting at one state, sample one complete trajectory to update the value function

Temporal-Difference Backup

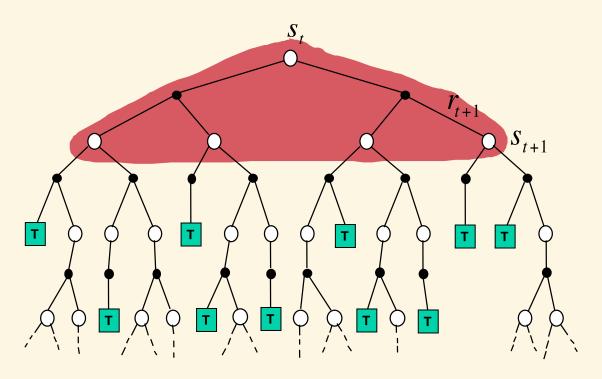
$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$$



In TD backup is just over one step

Tree Search/Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$$



If we know the dynamics of the environment, we can do search and a complete backup over the tree

Bootstrapping and Sampling

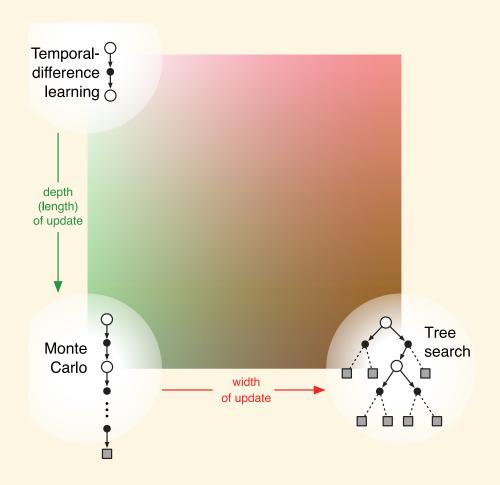
Bootstrapping: update involves an estimate

- MC does not bootstrap
- Tree Search (with heuristic search) or dynamic programming bootstraps
- TD bootstraps

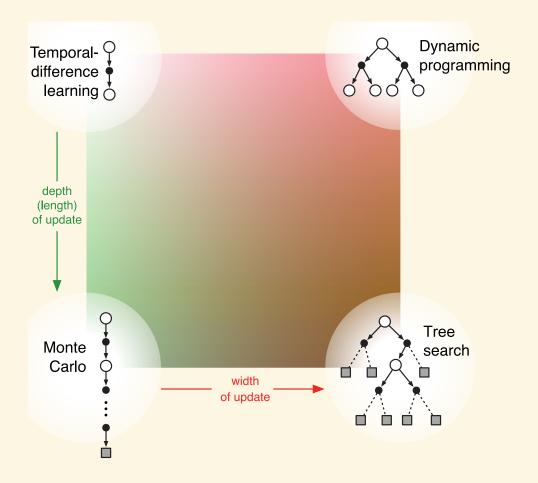
Sampling: update samples an expectation

- MC samples
- Tree Search does not sample
- TD samples

Unified View of Reinforcement Learning (1)



Unified View of Reinforcement Learning (2)

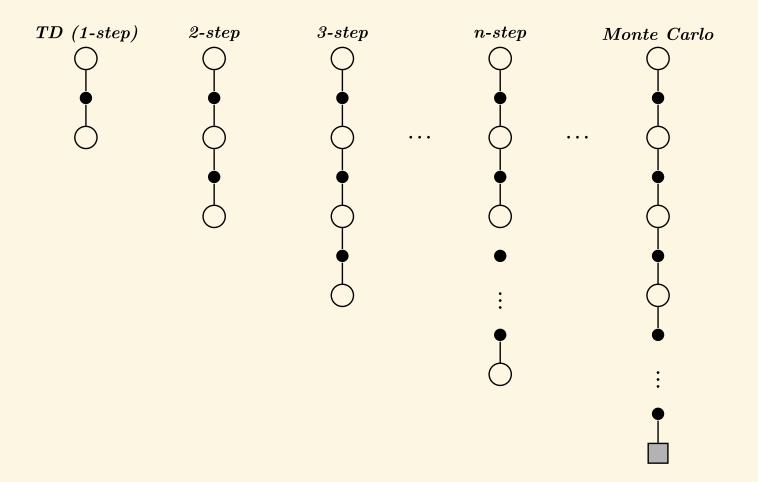


- Dynamic programming only explores one level, in it's most simple form.
- In practice, dynamic programming is used during tree search, similar to classical planning.

$TD(\lambda)$

n-Step Prediction

Let TD target look n steps into the future



n-Step Return

Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n=1 \text{ (TD(0))}$$
 $G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$ $n=2$ $G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$ \vdots \vdots \vdots $G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$

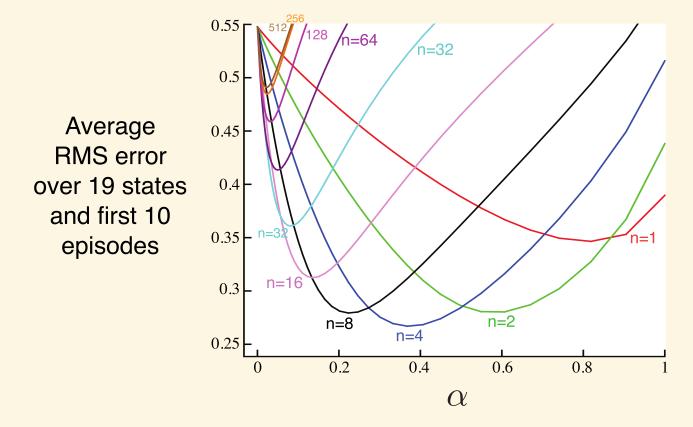
Define the n-step Return (real reward + estimated reward, $\gamma^n V(S_{t+n})$):

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

n-step temporal-difference learning (updated in direction of error)

- MC looks at the real reward
- So which *n* is the best?

Large Random Walk Example



• RMS errors vary according to step size α , with the optimum dependent on n

Note that RMS errors also vary according to whether learning is *on-line* or *off-line* updates (not shown here)

• i.e. whether *immediately* update value function or *defer* updates until episode ends

Averaging n-Step Returns

We can form *mixtures* of different n:

e.g. average of 2-step and 4-step returns:

$$\frac{1}{2}G_t^{(2)} + \frac{1}{2}G_t^{(4)}$$

We can average n-step returns over different n

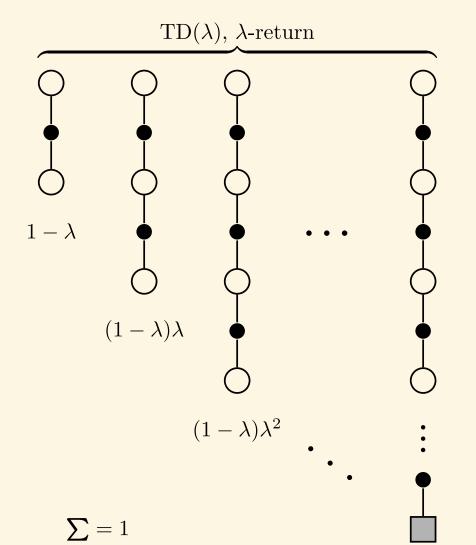
e.g. average the 2-step and 4-step returns

Combines information from two different time-steps

Can we efficiently combine information from *all* timesteps to be more robust?



λ -return



The λ -return G_t^λ combines all n-step returns $G_t^{(n)}$

• Using weight $(1 - \lambda)\lambda^{n-1}$

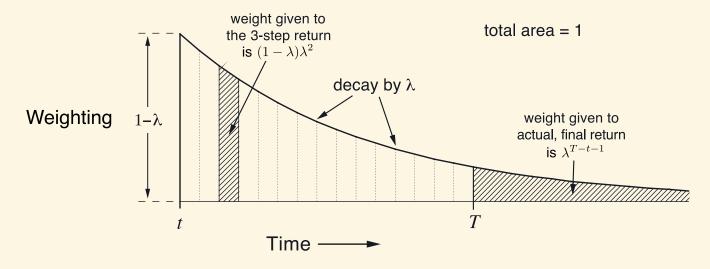
$$G_t^{\lambda} = (1-\lambda)\sum_{n=1}^{\infty} \lambda^{n-1}G_t^{(n)}$$

Forward-view $TD(\lambda)$

 λ^{T-t-1}

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t^{\lambda} - V(S_t))$$

$\mathsf{TD}(\lambda)$ Weighting Function



$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

ullet λ -return is a geometrically weighted return for every n-step return

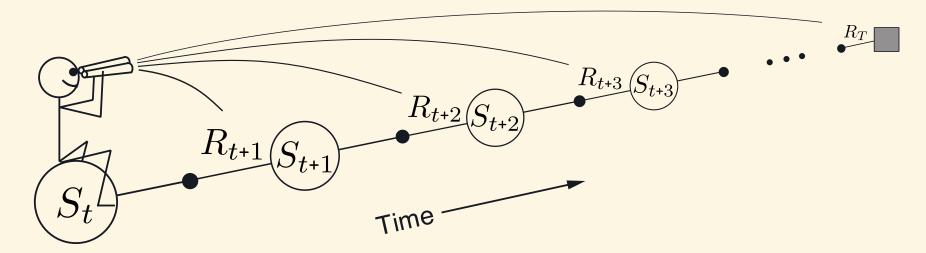
Note that geometric weightings are memoryless

• i.e. we can compute $TD(\lambda)$ with with no greater complexity than TD(0)

However, the formulation presented so far is a forward view

we can't look into the future!

Forward View of $TD(\lambda)$

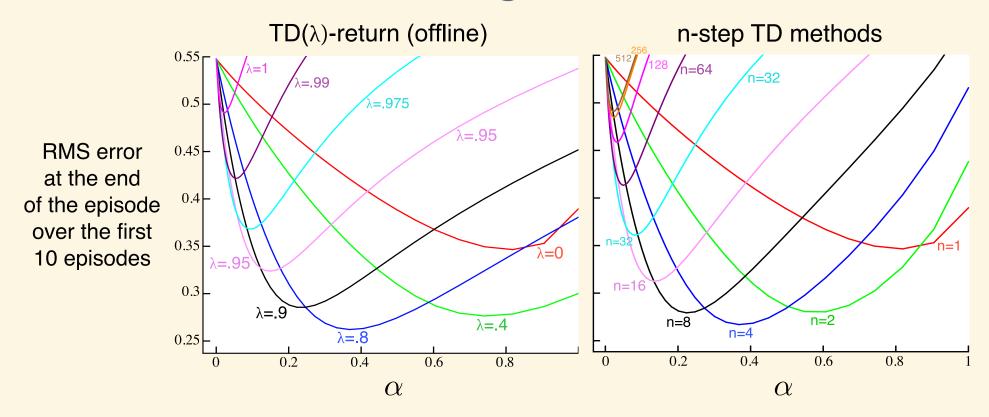


Update value function towards the λ -return

- ullet Forward-view looks into the future to compute G_t^λ
- Like MC, can only be computed from complete episodes

We will see shortly how an *iterative* algorithm achieves the forward view without having to wait until the future

Forward View of TD(λ) on Large Random Walk



We can see using $TD(\lambda)$, and choosing λ value (left hand side), is more robust than choosing a *unique* n-step value (right hand side)

• $\lambda = 1$ is MC and $\lambda = 0$ is TD(0)

Backward View of $TD(\lambda)$

- Forward view provides theory
- Backward view provides mechanism
- Update online, every step, from incomplete sequences

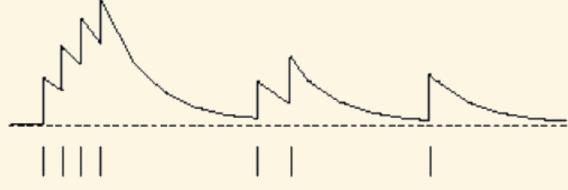
Eligibility Traces

Credit assignment problem: did bell or light cause shock?

- Frequency heuristic: assign credit to most frequent states
- Regency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + 1(S_t = s)$$



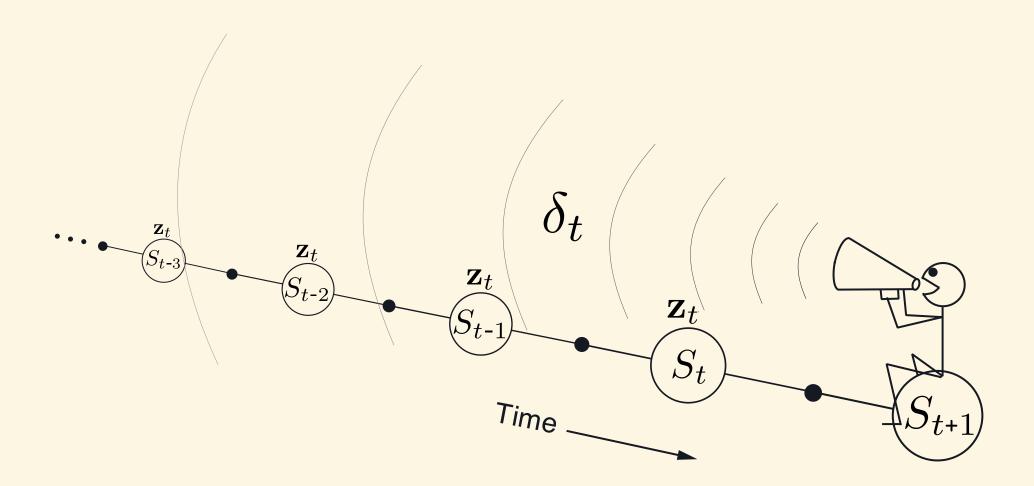
accumulating eligibility trace

times of visits to a state

Backward View $TD(\lambda)$

- Keep an eligibility trace for every state s
- Update value V(s) for every state s
- ullet In proportion to TD-error δ_t and eligibility trace $E_t(s)$

$$egin{aligned} \delta_t &= R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \ & V(s) \,\leftarrow\, V(s) + lpha\, \delta_t E_t(s) \end{aligned}$$



$TD(\lambda)$ and TD(0)

When $\lambda = 0$, only the current state is updated.

$$E_t(s) = \mathbf{1}(S_t = s)$$

$$V(s) \leftarrow V(s) + \alpha \, \delta_t \, E_t(s)$$

This is exactly equivalent to the TD(0) update.

$$V(S_t) \leftarrow V(S_t) + \alpha \, \delta_t$$

$\mathsf{TD}(\lambda)$ and MC

When $\lambda = 1$, credit is deferred until the end of the episode.

- Consider episodic environments with offline updates.
- Over the course of an episode, the total update for $\mathsf{TD}(\lambda)$ is the same as the total update for MC.

Theorem

The sum of offline updates is identical for forward-view and backward-view $TD(\lambda)$:

$$\sum_{t=1}^T lpha \, \delta_t \, E_t(s) \; = \; \sum_{t=1}^T lpha ig(G_t^\lambda - V(S_t) ig) \, \mathbf{1}(S_t = s).$$

Example: Temporal-Difference Search for MCTS

Example: Temporal-Difference Search for MCTS

Simulation-based search

- ... using TD instead of MC (bootstrapping)
- MC tree search applies MC control to sub-MDP from now
- TD search applies Sarsa to sub-MDP from now

MC versus TD search

For model-free reinforcement learning, bootstrapping is helpful

- TD learning reduces variance but increases bias
- TD learning is usually more efficient than MC
- $TD(\lambda)$ can be much more efficient than MC

For simulation-based search, bootstrapping is also helpful

- TD search reduces variance but increases bias
- TD search is usually more efficient than MC search
- TD(λ) search can be much more efficient than MC search

TD search

Simulate episodes from the current (real) state s_t

Estimate action-value function Q(s,a)

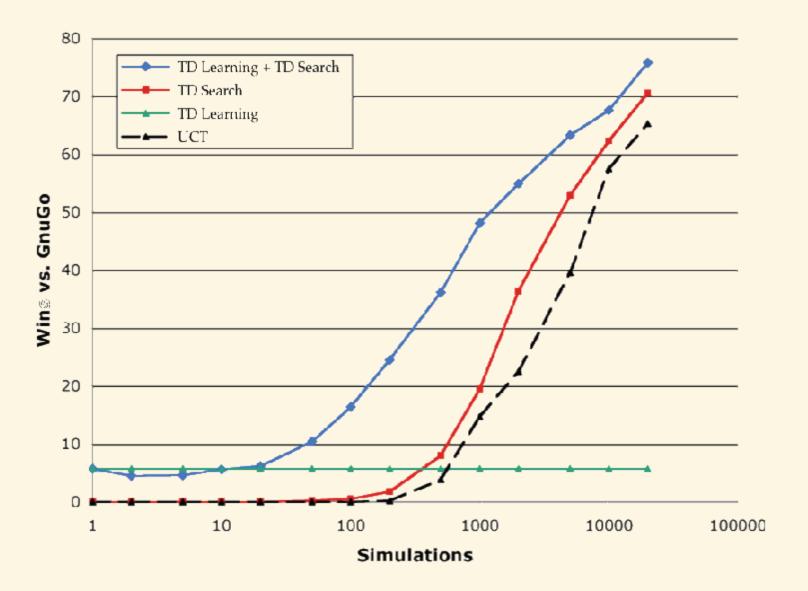
• For each step of simulation, update action-values by Sarsa

$$\Delta Q(S, A) = \alpha (R + \gamma Q(S', A') - Q(S, A))$$

- Select actions based on action-values Q(s,a)
 - e.g. ϵ -greedy

May also use function approximation for Q, if needed

Results of TD search in Go



- Black dashed line is MCTS
- Blu line is Dyna-Q (not covered in this module)

Learning from simulation is an effective method in search

Model-Free Control (Sarsa and Q-Learning)

Uses of Model-Free Control

Example problems that can be naturally modelled as MDPs

- Elevator
- Parallel Parking
- Ship Steering
- Bioreactors
- Power stations

- Computer Programming
- Fine tuning LLMs
- Portfolio management
- Protein Folding
- Robot walking

For most of these problems, either:

- MDP model is unknown, but experience can be sampled
- MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

On and Off-Policy Learning

On-policy learning

- "Learn on the job"
- Learn about policy π from experience sampled from π

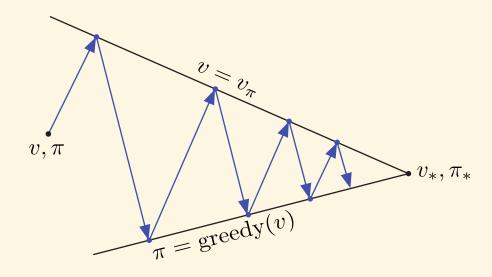
Off-policy learning

- "Look over someone's shoulder"
- Learn about policy π from experience sampled from μ

Off-policy learning uses trajectories sampled from policy μ , e.g. from another robot, Al agent, human, or simulator.

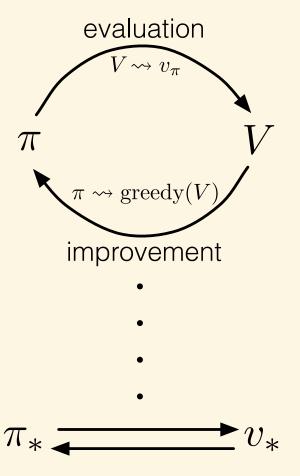
On-Policy Monte-Carlo Control

Generalised Policy Iteration



Alternation converges on optimal policy π_*

- Policy evaluation Estimate v_{π} e.g. Iterative policy evaluation, going up
- Policy improvement Generate $\pi' \geq \pi$ e.g. Greedy policy improvement, act greedily with respect to value function, *going down*



Principle of Optimality

Any optimal policy can be subdivided into two components:

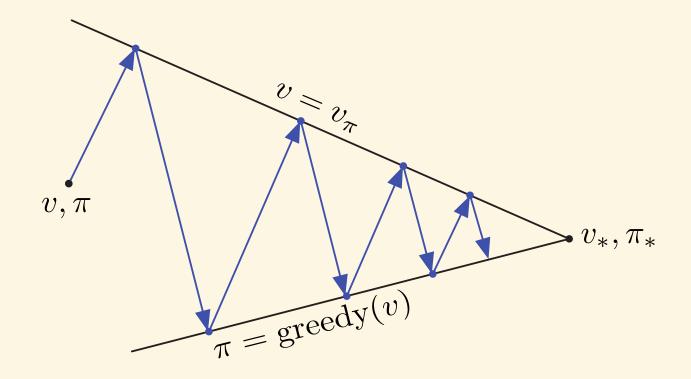
- ullet An optimal first action A_*
- ullet Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state $s,v_\pi(s)=v_*(s),$ if and only if

- ullet For any state s^\prime reachable from s
- ullet π achieves the optimal value from state $s', v_\pi(s') = v_*(s')$

Generalised Policy Iteration with Monte-Carlo Evaluation



Policy evaluation 1. Can we use Monte-Carlo policy evaluation to estimate $V=v_\pi$ (running multiple episodes/rollouts)?

Policy improvement 2. Can we do greedy policy improvement with MC evaluation?

Model-Free Policy Iteration Using Action-Value Function

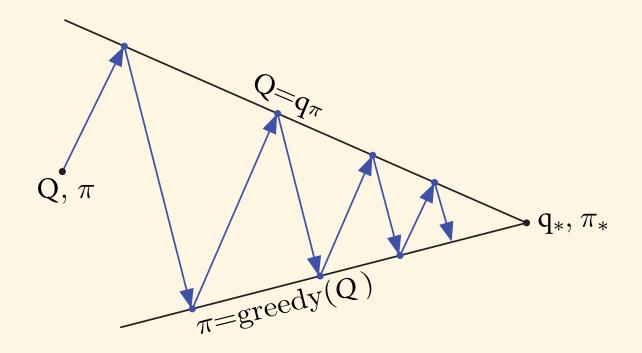
ullet Problem 1: Greedy policy improvement over V(s) requires a model of MDP

$$\pi'(s) \ = \ rg\max_{a \in \mathcal{A}} \left[\mathcal{R}^a_s \ + \ \sum_{s'} P^a_{ss'} \, V(s')
ight]$$

• Alternative: use action-value functions in place of model Greedy policy improvement over Q(s,a) is model-free

$$\pi'(s) = rg \max_{a \in \mathcal{A}} Q(s, a)$$

Generalised Policy Iteration with Action-Value Function



Policy evaluation We run Monte-Carlo policy evaluation using $Q=q_{\pi}$

- For each state-action pair Q(A,S) we take mean return
- We do this for all states and actions, i.e. we don't need model

Policy improvement Greedy policy improvement?

Problem 2: We are acting *greedily* which means you can get stuck in *local minima*

- Note that at each step we are running *episodes* for the policy by trial and error, so we might not see some states
- i.e. you won't necessarily see the states you need in order to get get correct estimate of value function
- Unlike in dynamic programming where you see all states

Example of Greedy Action Selection (Bandit problem)

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

There are two doors in front of you.

- You open the left door and get reward 0 $V(left) = 0 \; (Monte \; Carlo \; Estimate)$
- ullet You open the right door and get reward +1 V(right) = +1
- ullet You open the right door and get reward +3 V(right)=+2
- ullet You open the right door and get reward +2 V(right)=+2

You may never explore left door again!

• i.e. are you sure you've chosen the best door?

ε -Greedy Exploration

The simplest idea for ensuring continual exploration:

All m actions are tried with non-zero probability

- with probability $1-\varepsilon$ choose the best action, greedily
- with probability ε choose a random

$$\pi(a \mid s) = egin{cases} rac{arepsilon}{m} + 1 - arepsilon & ext{if } a^* = rg \max_{a \in \mathcal{A}} Q(s, a) \ rac{arepsilon}{m} & ext{otherwise} \end{cases}$$

ε -Greedy Policy Improvement

Theorem

For any arepsilon-greedy policy π , the arepsilon-greedy policy π' with respect to q_π is an improvement, $v_{\pi'}(s) \geq v_\pi(s)$

$$q_{\pi}(s, \pi'(s)) = \sum_{a \in \mathcal{A}} \pi'(a \mid s) q_{\pi}(s, a)$$

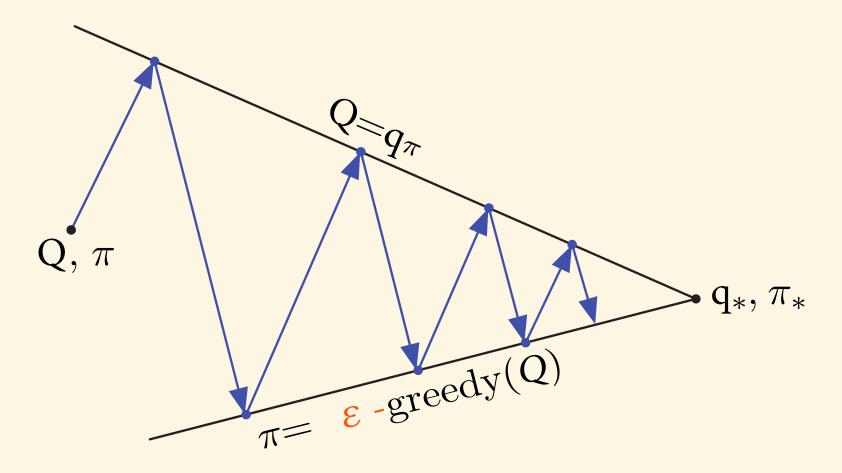
$$= \frac{\varepsilon}{m} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \varepsilon) \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

$$\geq \frac{\varepsilon}{m} \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \varepsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a \mid s) - \frac{\varepsilon}{m}}{1 - \varepsilon} q_{\pi}(s, a)$$

$$= \sum_{a \in \mathcal{A}} \pi(a \mid s) q_{\pi}(s, a) = v_{\pi}(s)$$

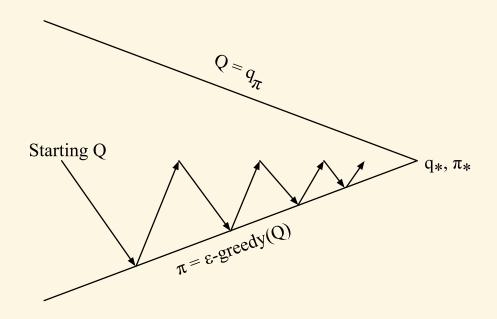
Proof idea: $\max_{a \in \mathcal{A}} q_{\pi}(a, a)$ is at least as good as any weighted sum of all of your actions; therefore from the policy improvement theorem, $v_{\pi}'(s) \geq v_{\pi}(s)$

Monte-Carlo Policy Iteration



Policy evaluation Monte-Carlo policy evaluation, $Q=q_\pi$ Policy improvement $\varepsilon-$ Greedy policy improvement

Monte-Carlo Control



Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Qpprox q_\pi$

• Not necessary to fully evaluate policy every time, going all the way to the top, instead, immediately improve policy for every episode

Policy improvement ε —Greedy policy improvement

Greedy in the Limit with Infinite Exploration (GLIE)

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

• All state-action pairs are explored infinitely many times,

$$\lim_{k o\infty}N_k(s,a)=\infty$$

• The policy converges on a greedy policy,

$$\lim_{k o \infty} \pi_k(a \mid s) = \mathbf{1}igg(a = rg \max_{a' \in \mathcal{A}} Q_k(s, a')igg)$$

For example, arepsilon-greedy is GLIE if $arepsilon_k$ reduces to zero at $arepsilon_k=rac{1}{k}$

• i.e. decay ε over time according to a hyperbolic schedule

Note that the term $\mathbf{1}(S_t=s)$ is an *indicator function* that equals 1 if the condition inside is true, and 0 otherwise.

$$\mathbf{1}(S_t = s) = egin{cases} 1, & ext{if } S_t = s \ 0, & ext{otherwise} \end{cases}$$

It acts as a *selector* that ensures the update is applied only to the state currently being visited.

• The boldface notation $\mathbf{1}(S_t=s)$ simply emphasises that this is a function, not a constant.

GLIE Monte-Carlo Control

Sample kth episode using π : $\{S_1, A_1, R_2, \ldots, S_T\} \sim \pi$

For each state S_t and action A_t in the episode update an incremental mean,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} \Big(G_t - Q(S_t, A_t) \Big)$$

Improve policy based on new action-value function, replacing Q values at each step

$$\varepsilon \leftarrow \frac{1}{k}$$
 $\pi \leftarrow \varepsilon$ -greedy(Q)

• In practice don't need to store π , just store Q (π becomes implicit)

Theorem

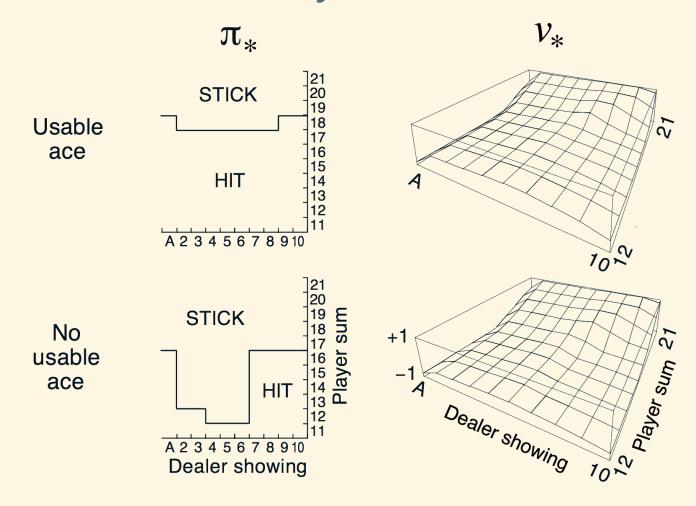
GLIE Monte Carlo control converges to the optimal action-value function,

$$Q(s,a) \rightarrow q_*(s,a)$$

- Converges to the optimal policy, π_*
- Every episode Monte-Carlo is substantially more efficient than running multiple episodes at each step

Back to the Blackjack Example

Monte-Carlo Control in Blackjack



Monte-Carlo Control algorithm finds the optimal policy!

(Note: Stick is equivalent to hold in this Figure)

On-Policy Temporal-Difference Learning

MC versus TD Control (Gain efficiency by Bootstrapping)

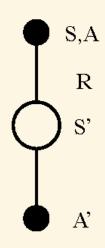
Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)

- Lower variance
- Online (including non-terminating)
- Incomplete sequences

Natural idea: use TD instead of MC in our control loop

- ullet Apply TD to Q(S,A)
- Use ε -greedy policy improvement
- Update every time-step

Updating Action-Value Functions with Sarsa

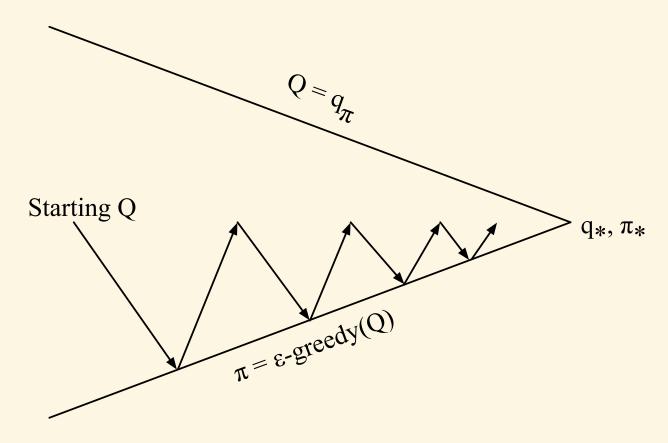


$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma Q(S',A') - Q(S,A)\right)$$

Starting in state-action pair S, A, sample reward R from environment, then sample our own policy in S' for A' (note S' is chosen by the environment)

• Moves Q(S,A) value in direction of **TD Target** - Q(S,A) (as in Bellman equation for Q).

On-Policy Control with Sarsa



Every time-step:

Policy evaluation Sarsa, $Q pprox q_{\pi}$

Policy improvement ε —Greedy policy improvement

Sarsa Algorithm for On-Policy Control

Sarsa (On-Policy)

```
Initialise Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily except that Q(\operatorname{terminal-state}, \cdot) = 0

Loop for each episode: Initialise S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode: Take action A, observe R, S' (environment takes us to state S') Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
```

 $Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma Q(S',A') - Q(S,A)]$

until S is terminal

 $S \leftarrow S'; A \leftarrow A'$

RHS of Q(S,A) update is on-policy version of Bellman equation—expectation of what happens in environment to state S^{\prime} and what happens under our own policy from that state S^{\prime} onwards.

Convergence of Sarsa (Stochastic optimisation theory)

Theorem

Sarsa converges to the optimal action–value function, $Q(s,a) o q_*(s,a)$, under the following conditions:

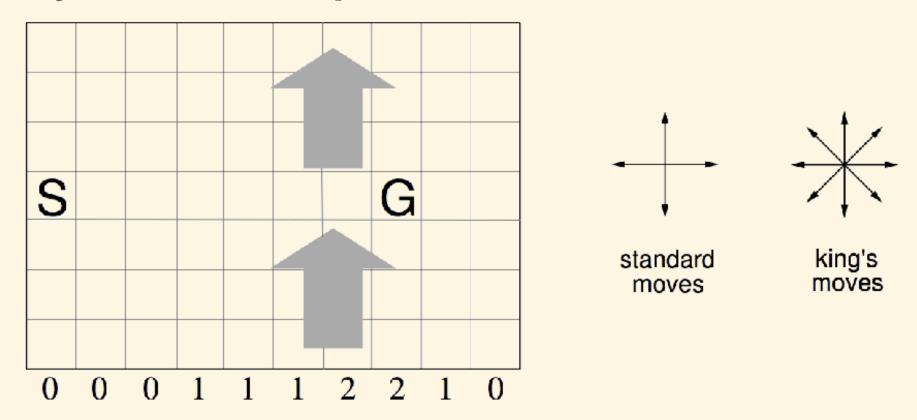
- GLIE sequence of policies $\pi_t(a \mid s)$
- Robbins-Monro sequence of step-sizes α_t

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

Tells us that step sizes must be sufficiently large to move us as far as you want; and changes to step sizes must result in step eventually vanishing

Windy Gridworld Example

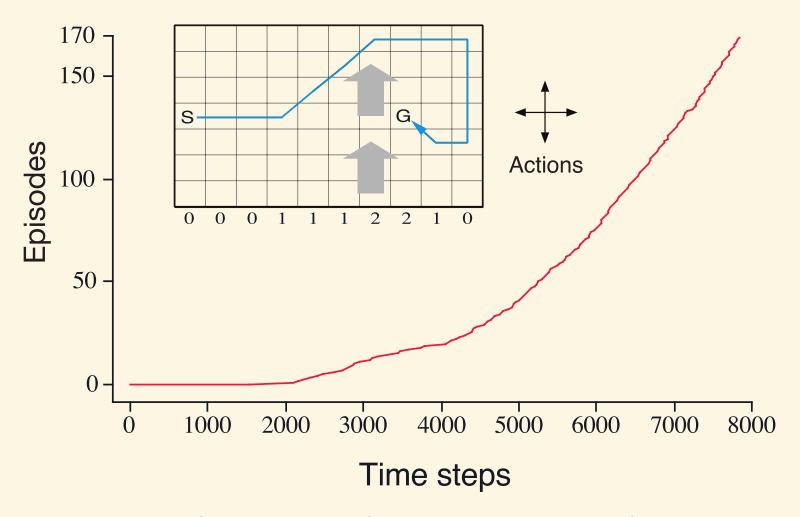


Numbers under each column is how far you get blown up per time step

• Reward = -1 per time-step until reaching goal

(Undiscounted and uses fixed step size α in this example)

Sarsa on the Windy Gridworld



n-Step Sarsa (Bias-variance trade-off)

Consider the following n-step returns for $n=1,2,\infty$:

$$egin{aligned} n &= 1 & ext{(Sarsa)} & q_t^{(1)} &= R_{t+1} + \gamma Q(S_{t+1}) \ n &= 2 & q_t^{(2)} &= R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2}) \ dots &dots &dots \ n &= \infty & ext{(MC)} & q_t^{(\infty)} &= R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T \end{aligned}$$

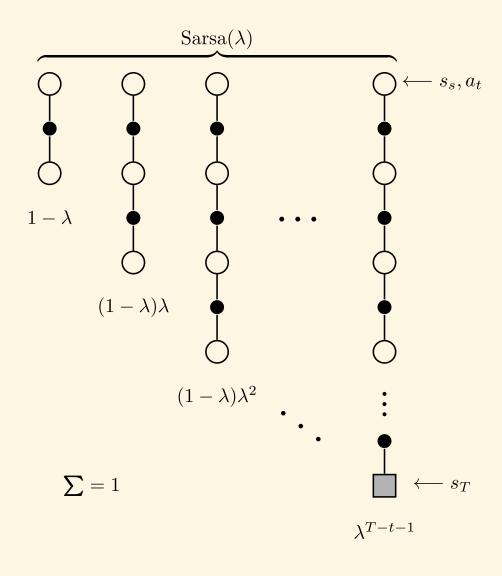
Define the n-step Q-return:

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

n-step Sarsa updates Q(s,a) towards the n-step Q-return:

- n=1: high bias, low variance
- $n = \infty$: no bias, high variance

Forward View Sarsa(λ)



We can do the same thing for control as we did in model-free prediction:

The q^{λ} return combines all n-step Q- $\binom{n}{t}$ returns q_t

Using weight $(1 - \lambda)\lambda^{n-1}$:

$$q_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} q_t^{(n)}$$

Forward-view Sarsa(λ):

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{\lambda} - Q(S_t, A_t)\right)$$

Backward View Sarsa(λ)

Just like $TD(\lambda)$, we use eligibility traces in an online algorithm

• However Sarsa(λ) has one eligibility trace for each state-action pair

$$E_0(s,a) = 0$$

 $E_t(s,a) = \gamma \lambda E_{t-1}(s,a) + \mathbf{1}(S_t = s, A_t = a)$

Q(s,a) is updated for every state s and action a

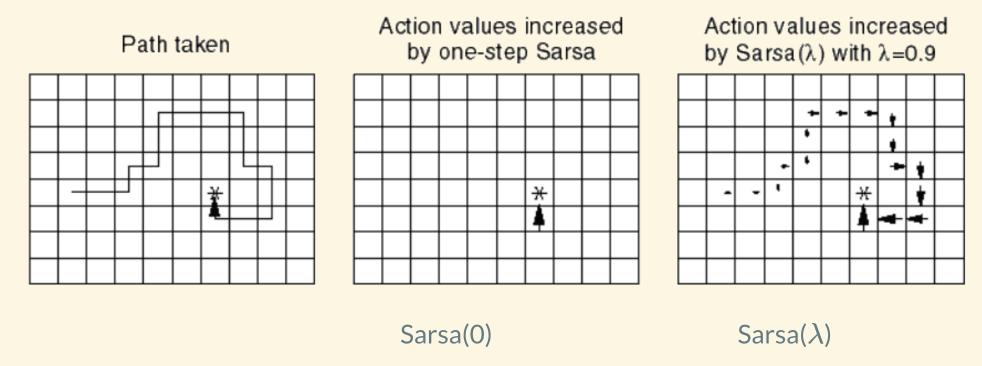
• In proportion to TD-error δ_t and eligibility trace $E_t(s,a)$

$$\delta_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)$$
 $Q(s, a) \leftarrow Q(s, a) + \alpha \, \delta_t \, E_t(s, a)$

$Sarsa(\lambda)$ Algorithm

```
Sarsa(\lambda)
Initialise Q(s,a) arbitrarily, orall s \in \mathcal{S}, a \in \mathcal{A}(s)
Loop for each episode:
  E(s,a)=0, for all s\in\mathcal{S}, a\in\mathcal{A}(s)
  Initialise S, A
  Loop for each step of episode:
    Take action A, observe R, S'
    Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
    \delta \leftarrow R + \gamma Q(S', A') - Q(S, A)
    E(S,A) \leftarrow E(S,A) + 1
    For all s \in \mathcal{S}, a \in \mathcal{A}(s):
      Q(s,a) \leftarrow Q(s,a) + \alpha \, \delta \, E(s,a)
      E(s,a) \leftarrow \gamma \lambda E(s,a)
    S \leftarrow S' : A \leftarrow A'
until S is terminal
```


Sarsa(λ) Gridworld Example



- Assume initialise action-values to zero
- ullet Size of arrow indicates magnitude of Q(A,S) value for that state
- Sarsa updates all action-state pairs Q(s,a) at each step of episode

Off-Policy Learning

Off-Policy Learning

Evaluate target policy $\pi(a\mid s)$ to compute $v_\pi(s)$ or $q_\pi(s,a)$ while following a behaviour policy $\mu(a\mid s)$

$$\{S_1,A_1,R_2,\ldots,S_T\}\sim \mu$$

Why is this important?

- Learning from observing humans or other agents (either AI or simulated)
- Re-use experience generated from old policies $\pi_1, \pi_2, \dots, \pi_{t-1}$
- Learn about optimal policy while following exploratory policy
- Learn about multiple policies while following one policy

Importance Sampling

Estimate the expectation of a different distribution

$$egin{aligned} \mathbb{E} X \sim & P[f(X)] &= \sum P(X)f(X) \ &= \sum Q(X) rac{P(X)}{Q(X)}f(X) \ &= \mathbb{E} X \sim & Q\left[rac{P(X)}{Q(X)}f(X)
ight] \end{aligned}$$

A technique for estimating expectations by sampling from different distributions

 Re-weights by dividing and multiplying samples to correct mismatch between expectations of the different distributions

Importance Sampling for Off-Policy Monte-Carlo

Use returns generated from μ to evaluate π

- Weight return G_t according to similarity between policies
- Multiply importance sampling corrections along entire episode

$$G_t^{\pi/\mu} = rac{\pi(A_t \mid S_t)}{\mu(A_t \mid S_t)} rac{\pi(A_{t+1} \mid S_{t+1})}{\mu(A_{t+1} \mid S_{t+1})} \cdots rac{\pi(A_T \mid S_T)}{\mu(A_T \mid S_T)} G_t$$

Updates values towards corrected return

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\sigma^{\pi/\mu}}{t} - V(S_t) \right)$$

- Cannot use if μ is zero when π is non-zero
- However, importance sampling dramatically increases variance, in case of Monte-Carlo learning

Importance Sampling for Off-Policy TD

Use TD targets generated from μ to evaluate π

• Weight TD target $R + \gamma V(S')$ by importance sampling

Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t \mid S_t)}{\mu(A_t \mid S_t)} \left(R_{t+1} + \gamma V(S_{t+1}) \right) - V(S_t) \right)$$

- Much lower variance than Monte Carlo importance sampling (policies only need to be similar over a single step)
- In practice you have to use TD learning when working off-policy (it becomes imperative to bootstrap)

Q-Learning

We now consider off-policy learning of action-values, Q(s,a)

No importance sampling is required using action-values as you can bootstrap as follows

- ullet Next action is chosen using behaviour policy $A_{t+1} \sim \mu(\cdot \mid S_t)$
- ullet But we consider alternative successor action $A' \sim \pi(\cdot \mid S_t)$
- ullet · · · · and we update $Q(S_t,A_t)$ towards value of alternative action

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma Q(S_{t+1}, A') - Q(S_t, A_t)\right)$$

Q-learning is the technique that works best with off-policy learning

Off-Policy Control with Q-Learning

We can now allow both behaviour and target policies to improve

• The target policy π is greedy w.r.t. Q(s,a)

$$\pi(S_{t+1}) = \arg\max_{a'} Q(S_{t+1}, a')$$

• The behaviour policy μ is e.g. ε -greedy w.r.t. Q(s,a)

The Q-learning target then simplifies according to:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$
 $= R_{t+1} + \gamma Q(S_{t+1}, \arg \max_{a'} Q(S_{t+1}, a'))$
 $= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$

Q-Learning Control Algorithm



$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

Theorem

Q-learning control converges to the optimal action–value function, $Q(s,a) \; o \; q_*(s,a)$

Q-Learning Algorithm for Off-Policy Control

Q—Learning (Off-Policy)

Initialise $Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$ Loop for each episode:

Initialise S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

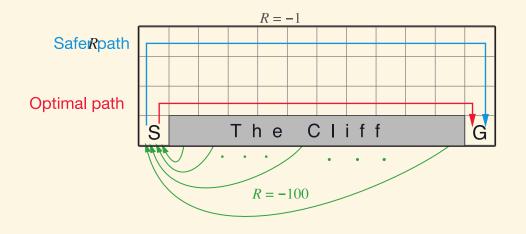
Take action A, observe R, S'

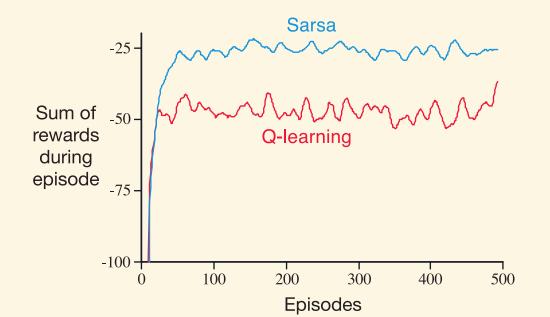
$$Q(S,A) \leftarrow Q(S,A) + \alpha \Big[R + \gamma \max_a Q(S',a) - Q(S,A) \Big]$$

 $S \leftarrow S'$

until S is terminal

Cliff Walking Example (Sarsa versus Q-Learning)





Relationship between Tree Backup and TD

	Full Backup (DP)	Sample Backup (TD)
	$v_{\pi}(s) \leftarrow s$ a r	
Bellman Expectation Equation for $v_{\pi}(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\pi}(s,a) \longleftrightarrow s,a$ r s' $q_{\pi}(s',a') \longleftrightarrow a'$	S,A R S'
Equation for $q_{\pi}(s,a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s,a)$	$q_*(s,a) \leftrightarrow s,a$ $q_*(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

Relationship between DP and TD

Dynamic Programming (DP)	Sample Backup (TD)
Iterative Policy Evaluation	TD Learning
$V(s) \leftarrow \mathbb{E}[R + \gamma V(S') \mid s]$	$V(S) \leftarrow \alpha R + \gamma V(S')$
Q-Policy Iteration	Sarsa
$Q(s,a) \leftarrow \mathbb{E}[R + \gamma Q(S',A') \mid s,a]$	$Q(S,A) \leftarrow \alpha \qquad R + \gamma Q(S',A')$
Q-Value Iteration	Q-Learning
$Q(s,a) \leftarrow \mathbb{E}[R + \gamma \max_{a'} \in \mathcal{A} Q(S',a') \mid s,a]$	$Q(S,A) \leftarrow \frac{\alpha}{R} + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$

where
$$x \leftarrow \frac{\alpha}{-} \quad y \equiv x \leftarrow x + \alpha \left(y - x
ight)$$

